The optimality principle for discrete and first order partial differential inclusions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of First Order Partial Differential Inclusions in Gradient Form

This paper is dedicated to optimization of socalled first order differential (PC) inclusions in gradient form on a square domain. As a supplementary problem, discreteapproximation problem is considered. In the Euler-Lagrange form, necessary and sufficient conditions are derived for partial differential inclusions (PC). The results obtained are based on a new concept of locally adjoint mappings.

متن کامل

Numerical scheme for first order differential inclusions

The aim of this paper is to study a whole class of first order differential inclusions, which fit into the framework of perturbed sweeping process by a uniformly prox-regular set. After obtaining well-posedness results, we propose a numerical scheme based on a predictioncorrection algorithm and we prove its convergence. Finally we apply these results to a problem coming from modelling of crowd ...

متن کامل

Necessary optimality conditions for discrete inclusions

The aim of this paper is to present a short survey of several new results concerning optimization of discrete inclusions. We study an optimization problem given by a discrete inclusion with end point constraints and we present several approaches concerning first and secondorder necessary optimality conditions for this problem.

متن کامل

First Order Partial Differential Equations

If T⃗ denotes a vector tangent to C at t,x,u then the direction numbers of T⃗ must be a,b, f. But then (1.2) implies that T⃗ n⃗, which is to say, T⃗ lies in the tangent plane to the surface S. But if T⃗ lies in the tangent plane, then C must lie in S. Evidently, solution curves of (1.2) lie in the solution surface S associated with (1.2). Such curves are called characteristic curves for (1.2). W...

متن کامل

First order partial differential equations∗

2 Separation of variables and the complete integral 5 2.1 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The envelope of a family of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 The complete integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Determining the characteristic strips from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2005

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2004.11.047